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Abstract—A wide-ranging analytical investigation of laminar film condensation is presented. The situation
under study is an isothermal vertical plate with steam as the condensing vapor and air as the noncondensable
gas. In addition to the noncondensable gas, the analytical model includes interfacial resistance, super-
heating, free convection due to both temperature and concentration gradients, mass diffusion and thermal
diffusion, and variable properties in both the liquid and the gas-vapor regions. Heat-transfer results are
obtained for a wide range of parameters including bulk concentration of the noncondensable gas, system
pressure level, wall-to-bulk temperature difference, and degree of superheating, It is demonstrated that
small bulk concentrations of the noncondensable gas can have a decisive effect on the heat-transfer rate.
For instance, for a bulk mass fraction of air equal to 0-5 per cent, reductions in heat transfer of 50 per
cent or more are sustained. The influence of the noncondensable gas is accentuated at lower pressure levels.
It is shown that the aforgmentioned reductions in heat transfer are due entirely to the diffusional resistance
of the gas-vapor boundary layer. The interfacial resistance is shown to be a second order effect. A similar
finding applies to thermal diffusion and diffusion thermo. The effect of superheating, which is very small in
the case of a pure vapor, becomes much more significant in the presence of a noncondensable gas. A refer-
ence temperature rule is deduced for extending the Nusselt model to variable-property conditions.

NOMENCLATURE R, gas constant ;
C,c, constants, equations (16) and (2b); Sc, Schmidt number, v/D;
Cps specific heat, constant pressure ; T, temperature ;
D, binary diffusion coefficient ; T, > bulk saturation temperature;
F,f, dimensionless stream functions; T, bulk temperature;
g, acceleration of gravity; T.. wall temperature;
heg latent heat of condensation; T;, interface temperature;
I diffusive mass flux, equation (9); T*  reference temperature, equation (37);
k, thermal conductivity; u, v, velocity components;
M, molecular weight ; W, mass fraction;
M,m, interface mass flux; x,y  coordinates.
D total pressure;
Pes vapor pressure; Greek symbols
Pr, Prandtl number, ¢ u/k; a, thermal diffusion factor;
4, wall heat flux; 4, condensate film thickness;
q*. generalized heat flux, equation (11); H,n, similarity variables;

T Present address: Department of Energy Engineering,
University of Hlinois at Chicago Circle, Chicago, Illinois #

60680.

6,0, dimensionless temperature;
absolute velocity;

v, kinematic viscosity ;
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[ density ;
, condensation coefficient ;
&, ¢, property ratios;
¥ s, stream functions.
Subscripts
g, noncondensable gas;
Nu, from the Nusselt model;
o, Vapor;
W, at the wall;
0, at the interface;
o0, in the bulk.
INTRODUCTION

FiLM CONDENSATION on isothermal vertical
surfaces has been a subject of active analytical
study since the pioneering analysis of Nusselt
[1]. In the intervening years, the various simpli-
fying assumptions embodied in that first in-
vestigation have been relaxed so that, with
certain reservations, the solution of Nusselt's
problem may now be regarded as complete.
An extensive bibliographical survey of contribu-
tions to this problem area has been prepared by
Wilhelm [2]. The physical situation studied by
Nusselt and in various succeeding investigations
is, perhaps, the simplest of all problems in
laminar film condensation: namely, a pure,
quiescent, saturated vapor condensing on an
isothermal vertical plate.

A class of condensation problems of much
greater complexity is encountered when con-
sideration is given to vapors which contain non-
condensable gases. In such situations, concentra-
tion and temperature gradients are set up in the
vapor—gas mixture (temperature gradients will
occur if the vapor component is at its saturation
state}. Correspondingly, buoyancy forces, owing
to both concentration and temperature differ-
ences, are created. Furthermore, the thermo-
dynamic and transport properties of the vapor—
gas mixture may experience large variations. A
full description of the transport processes in the
mixture requires that the conservation equations
for mass, energy, momentum, and species be
written in their variable property forms. The
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dynamicinteraction of the aforementioned trans-
ports in the vapor—gas mixture produces a tem-
perature at the liquid-vapor interface that is
lower than the saturation temperature of the
bulk vapor.

Another physical mechanism of potential
importance is the so-called interfacial resistance.
This phenomenon may occur for both pure and
impure vapors, but its analytical evaluation is
much more formidable in the latter case. In
brief, the interfacial resistance results from the
fact that the net condensation of vapor at the
interface is actually the difference between the
simultaneous processes of evaporation and con-
densation. The kinetic theory of gases shows that
an unbalance between these two processes
must be accompanied by a temperature jump
at the interface, whence the additional thermal
resistance.

Another departure from the classical Nusselt
model is encountered when the vapor is super-
heated. Althoughtheeffect of superheatingonthe
condensation heat transfer rate is expected to
be small in the case of a pure vapor, it may well
be appreciable when factors such as non-
condensable gases and interfacial resistance act
to reduce the rate of condensation.

Whenever there are conceniration and tem-
perature gradients in a gas mixture such as occur
during the condensation of an impure vapor, the
processes of thermal diffusion and diffusion
thermo come into play. The first of these is a
transport of mass owing to a temperature gradi-
ent, while the second is an energy transport owing
to a concentration gradient. In certain technic-
ally-important problems, for example, mass-
transfer cooling, these processes have a signifi-
cant influence on the surface heat transfer. Their
effect on the condensation of impure vapors 15,
as yet, unexplored.

This investigation is concerned with the mn-
fluence of all of the aforementioned processes
and conditions on laminar condensation on an
isothermal vertical plate. The extent to which
these factors affect the condensation heat trans-
fer is systematically studied as a function of the
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system pressure level. In view of its technical
importance, steam was selected as the condensing
vapor for the present investigation, with air as
the noncondensable gas.

Inasmuch as such a wide range of effects is to
be dealt with, it appears advantageous to list the
main lines of the present research.

(1) Pure vapor: (a) interfacial resistance;
{b) superheating.

(2) Noncondensable gas: (a) with and without
interfacial resistance ; (b) with and without
superheating.

{3} Superheated vapor: (a} with and without
interfacial resistance ; (b) with and without
noncondensable gas.

(4) Interfacial resistance: (a) saturated and
superheated pure vapor; (b) saturated and
superheated vapor with a noncondensable
gas.

(5) Thermal diffusion and diffusion thermo:
(a) saturated and superheated vapor with a
noncondensable gas.

(6) Variable property effects in the condensed
liquid layer.

In all of the aforementioned cases in which
there are temperature (and concentration) gra-
dients within the vapor (and the vapor-gas
mixture), variable fluid property variations were
fully taken into account, as was the buoyancy
force which creates a free convection motion. As
noted in the foregoing item (6), variable property
effects in the condensate layer were also in-
cluded in the analysis. A reference temperature
rule was evolved which serves to extend the
Nusselt model.

Limited aspects of the just-described research
program are treated in the literature by approxi-
mate models. The effect of superheating a pure
vapor has been studied by Stender [3] and by
Sparrow and Eckert [4], respectively with a one-
dimensional model and a boundary-layer model.
In both cases, free convection, variable proper-
ties, and interfacial resistance were omitted from
the analysis. Silver [5, 6] employed Stender’s
model for analyzing the effect of interfacial
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resistance on the condensation of a pure, super-
heated vapor. In the case of a pure, saturated
vapor, Sukhatme and Rohsenow [7] computed
the effect of the interfacial resistance by local
application of the results of the Nusselt analysis.

Various semi-empirical analyses and compu-
tation methods have been proposed for predict-
ing the condensation heat transfer in the presence
of noncondensable gases ([8, 9] or standard heat
transfer textbooks). Very recently on the basis
of the conservation laws alone, Sparrow and
Lin [10] analyzed the condensation of saturated
steam-air mixtures. However, variable fluid
properties, temperature-induced buoyancy, and
interfacial resistance were not accounted for in
that analysis, nor were the processes of thermal
diffusion and diffusion thermo, which occur
naturally in a vapor—gas mixture.

The variation of the fluid properties within
the condensate film are generally neglected in
analytical studies of condensation heat transfer.
However, in the actual application of the heat
transfer results from such a model, it is common
to evaluate the liquid viscosity at a reference
temperature equal to the wall value plus one-
quarter of the temperature difference across the
film [11]. The choice of such a reference tem-
perature appears not yet to have been sub-
stantiated by detailed numerical computations.

Consideration of the just-discussed directly-
pertinent literature suggests the need for a
broad-ranging, in-depth study such as is reported
here.

In the presentation that follows, it is con-
venient to subdivide the analysis into two por-
tions, one dealing with condensation in the ab-
sence of interfacial resistance and the second
dealing with condensation in the presence of
interfacial resistance. This subdivision is natural
inasmuch as the former situation yields simi-
larity solutions of the appropriate boundary
layer equations, while the latter does not.

ANALYSIS OF CONDENSATION WITHOUT
INTERFACIAL RESISTANCE

Consideration is given to an isothermal
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vertical plate situated adjacent to a large body
of otherwise quiescent vapor. The vapor may
either be at its saturation state or be superheated.
Furthermore, the vapor may contain arbitrary
amounts of a noncondensable gas. When the
plate temperature is maintained at a value below
the saturation temperature, condensation will
occur. It is assumed that the condensate forms a
smooth filmt which flows downward along the
plate under the influence of gravity. It is natural
to regard the condensate film as a boundary
layer.

The condensation process activates the trans-
port of mass, momentum, energy, and species in
the vapor-gas mixture adjacent to the con-
densate film. The region in which these trans-
ports occur may also be regarded as a boundary
layer. Thus, there are a pair of co-existing, inter-
acting boundary layers, one in the liquid and one
in the vapor-gas mixture. It is convenient to
formulate the governing equations separately
for the two boundary layers, and then to couple
them by applying conditions of compatibility
at the interface.

The coordinates that are employed in the
analysis are as follows: x measures distances
(vertically downward)along the plate, withx = 0
coinciding with the leading edge; y measures
distances normal to the plate. The corresponding
velocity components are 4 and v. The thickness
of the condensate layer is defined as y = &(x).

Liquid boundary layer

The transport processes in the liquid boundary
layer are governed by the laws of mass, momen-
tum, and energy conservation. There is no diffi-

layer equations. However, it has been demon-
strated [ 12] that the inertia terms and the energy
convection terms have a negligible effect on heat
transfer for the range of parameter values:
appropriate to steam. In view of this, one may

+ The effect of ripples is to increase the heat transfer; this
is discussed in [24].

I ie. values of el T — T)/hg,Pr.
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employ a simplified set of boundary layer equa-
tions as follows

a 0

o) + 5—y(pv) =0 (ta)
d( ou

Pg+a*y(ﬂ-a;>*0 (1b)
o ( T
S(5)=e

The continuity equation is identically satis-
fied by introducing a stream function y, which,
in turn, may be reduced to a similarity stream
function f that depends only on a single inde-
pendent coordinate . The appropriate defini-
tions are

1 oy

U=—

@, 0y’

1 oy

@, 0x’
¥ = dv,exifly) (2a2)

y g ¥ T
= - =} —= 1}, 8 = —
e (4v§) ' T,

in which a dimensionless temperature variable 8
has also been introduced. Upon carrying out the
foregoing transformation of variables, the con-
servation laws are reduced to a pair of ordinary
differential equations

)]s (o) -o

where the primes denote derivatives with respect
to n and

(2b)

P /L k

o BT Tk W
the ¢ are temperature-dependent functions.

The boundary conditions appropriate to
equation (3) will be described later. For future
reference, it is convenient to derive expressions
for the streamwise velocity u; at the liquid-
vapor interface and for the mass flow per unit
area i crossing the interface. The former follows
directly from equations (2) as

us = 4vwczx*<f—-) .
(pI’ e

P
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The quantity r is related to the velocity com-
ponents u and v as follows

mdx = {(pudd — pvdx), 6)

Upon introducing the transformed variables, this
becomes
. 3cp,
mh =( “ )f(ms)-
X

Vapor-gas boundary layer

There is a considerably wider range of trans-
port processes taking place in the vapor-gas
boundary layer than in the just-discussed liquid
boundary layer. The additional processes in-
clude diffusional mass and heat transfers and
free convection.

In a two-component gas mixture, it is con-
venient to represent the local concentrations of
the components in terms of their mass fractions
W. These are defined as

W,=pjo. W,=pjp  (3a)

where p is the local density of the mixture and
p, and p, are, respectively, the local densities of
the gas and the vapor. Since p = p, + p,, it
follows that

Y]

W, + W, =1 (8b)

In view of equation (8b), W, and W, are not inde-
pendent, and one of them may be eliminated
from the problem. In this analysis, it has been
decided to retain W, and to drop its subscript;
therefore, in what follows, W, = W.

Owing to concentration and temperature
gradients, a diffusive mass flux j {per unit time
and area) is induced. For instance, the diffusive
mass flux of the gas, denoted by j,, is

o W aW(l — W)aT
Jo = pD[5y+ T 6Y] &

in which D is the binary diffusion coefficient and
o is the thermal diffusion factor.t The first term

1 This is not to be confused with the thermal diffusivity
k/pc,.
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within the brackets is the well-known mass
diffusion, while the second term represents ther-
mal diffusion. A similar expression can be
written for the diffusive flow of the vapor, j,.
Upon noting that the value of « appearing in the
J, equation is the negative of that appearing in
the j, equation, it is seen that

Jo = —Jg (10)
The generalized heat flux ¢* per unit time and

area in a binary mixture includes both convect-
ive and diffusive contributions and is given by

L M,
g* = kay + aRTMgM,,]" (i)
in which R and M respectively denote the local
gas constant and molecular weight of the mix-
ture, while M, and M, are the molecular weights
of the components. The first term in equation
(11) is immediately recognized as the conven-
tional Fourier conduction, while the second term
represents diffusion thermo.

In a binary mixture, mass must be conserved
for each of the components. This requirement
may be satisfied by writing a diffusion equation
for each of the species, or alternatively a con-
tinuity equation for the mixture and a diffusion
equation for one of the species. The latter ap-
proach is somewhat more convenient and will
be employed here.

Consideration may now be given to the boun-
dary-layer equations for the vapor—gas region.
The equations of continuity, diffusion, momen-
tum, and energy may be respectively written as

0 b
— — = 12
5x(pu) + ay("”) 0 (12)
oW . aw\ 4,
P(“W*””a;)‘ F

b Ju
*5}("5}) a4
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(T eT T
PCy ué; + 0*5}7 + (pr - Cpu).lg Ev =

oq*

o 09
The generalized diffusive mass flux and heat flux,
Jj, and g* respectively, are given by equations (9)
and (11). The quantity, g(p — p,), appearing in
equation (14) is the buoyancy force, which in-
duces a free-convection motion. This term is to
be retained as written ; that is, the usual linear
density—temperature approximation will not
be made. Another somewhat novel term is the
quantity (c,, — ¢,,)j(0T/0y) in equation (15).
This represents a net enthalpy flux owing to the
diffusion currents j, and j, (= —j,).

The foregoing conservation equations can be
reduced to a set of ordinary differential equations
by employing a similarity transformation as
follows

v

C dy
H —_— ;’E ‘[\ arv

d

T g :
O=_— S
T, ¢ <4v2 >

¥ = 4v, Cx*F(H),

(16)

o

in'which ¥ is a stream function that satisfies

1 oY

= - 17
&, oy’ v (17)

The end result of the transformation is

(18)

N e FY _[2F7
2,0, .0, 2,0,

+ (1 — <Pp)] =0 (19)
(?—" @’) + Prw<3¢cF + @, KK)@ =
P, v Sc
— Pry(A" + @, I'0) (20)
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in which
a ~/
I=_—W(l-W)— (21a)
Sc
aR® M? [W’
A= e = 21b
Cp MyMl\<SC * ) ‘ )
and
P k 1
(p = ¢ = T ¢ - T
(. Tk, o
@, =2 (210
CPm
o, =t Cp (21d)
(,Pb

The quantities Sc and Pr respectively represent
the local mixture' Schmidt and Prandtl numbers.
All of the thermodynamic and transport proper-
ties appearing in the foregoing equations are
functions of the local temperature and concen-
tration of the mixture. The primes denote
differentiatioh with respect to H.

Upon reconsideration of equations (18) and
(20), it is seen that the non-zero right-hand sides
are due exclusively to the thermal diffusion/dif-
fusion thermo effects. When these phenomena
are suppressed, as in a majority of the cases
studied here, then the corresponding right-hand
sides are equated to zero. Even with this simpli-
fication, equations (18) through (20) remain a
highly-coupled, highly non-linear, seventh-order
mathematical system. The solution of this
system and its coupling to the equations of the
liquid layer are discussed later.

In order to facilitate the aforementioned
coupling, it is useful to derive expressions for the
velocity u; and the mass flux M of the vapor—
gas mixture that crosses the interface per unit
time and area. From equations (16) and (17),
there follows directly

F/
u; = 4v C2x? (—») : (22)
® D,P,/11-0
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In deriving an expression for the mass flux, cog-
nizance must be taken of both diffusive and con-
vective components and of the contributions of

both species. To this end, one writes
M =M, + M, (23)

and

. dé .
M, = [(pkua; - pkv) +}k], k=g (24)

where the quantity in parentheses is the con-
vective mass flow and j is the diffusive mass flow.
Upon combining the foregoing equations and
noting that p, + p, = p, j, +j, = 0, there is
obtained

. dé

Then, after transformation in accordance with
equations (16) and (17) this becomes

M= ( gﬁfﬂ) F(0).
i

Attention will now be directed to the boun-
dary conditions and to the conditions of con-
tinuity and constraint at the interface.

(26)

Boundary and interface conditions; governing
parameters

To complete the statement of the problem, it
remains to specify conditions at the plate surface,
at the liquid—vapor interface, and in the bulk
of the vapor-gas mixture.

At the plate surface (y = 0), the temperature
T,, is prescribed and the velocity components u
and v are zero. In terms of the transformed
variables, these become

f=r=0 0=8, 27

atn = 0.

At the interface, there are both continuity
and constraint conditions. In general, the inter-
facial shear, the streamwise velocity, the mass
flux, the temperature, and the energy flux must
be continuous at the interface. With respect to
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the interfacial shear, it has been demonstrated
[12] that the neglect of the continuity require-
ment has a completely negligible effect on the
heat-transfer results for the range of parameters
appropriate to condensing steam. Furthermore,
owing to the lower condensation rates associated
with the presence of noncondensable gases, the
application of this finding in the present analysis
is fully justified. It is thus sufficient to impose the
Nusselt condition of negligible shear at the edge
of the liquid layer, that is, pdu/0y = Qat y = 6

(n = ny), or
(fi)’ o
Py

The continuity of the streamwise velocity u;
is implemented by equating expressions (5) and
(22), which gives

(f//(Pp)nd = (F,/(pud)p)()

Similarly, the continuity of the mass flux is
achieved by requiring that # = M and using
equations (7) and (26)

(28)
(29)

Temperature continuity is imposed by writing

0(n;) = ©(0). (31)

In order to formulate the condition of energy-
flux continuity, it is convenient to consider a
control volume that envelopes the interface. An
accounting of the various energy transports leads

to
aT .
) =Mh, - q*
( ay )liquid 1o q

in which h,, is the latent heat of condensation
and g* is the generalized heat flux as given by
equation (11). In deriving equation (32), it has
been assumed that the interface is impermeable
to the noncondensable gas. Upon rephrasing
equation (32) in terms of the variables of the

(32)
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analysis, one finds

Pt Y € PTa
(pwuq) ¢, Pr,, (@&,

®
§M FO) +( 2X@') + ProA(0). (33)
T, s, ),

In addition to the foregoing continuity re-
quirements, there are two conditions of con-
straint at the interface. The first is that the
interface is impermeable to the noncondensable
gas; that is M s = 0. Upon applying this condi-
tion to equation (24) and introducing the
transformed variables, there is obtained

[BFW +(}~V— + F)} = 0.
Sc o

The second constraint is that the interface
be a saturation state for the condensing vapor.
In effect, this condition provides a connecting
link between the interface temperature T; and
the interface mass fraction W. This relationship
may be illuminated as follows: For a given
interface temperature 7T, the corresponding
vapor pressure p, and vapor density p, are
uniquely determined from the saturation-state
relationship (e.g. from the Steam Tables).
Furthermore, if the total pressure p is specified,
then the partial pressure p, of the non-condens-
able gas follows from the Gibbs-Dalton Law
as p, = p — p,. Thus, from a knowledge of p,
and T, the density p, is calculable (e.g. from
the perfect gas law). Finally, the W correspond-
ing to the given T; follows as W = p_/(p, + p,).

In the bulk of the vapor-gas mixture (i.e.
y — o), it is required that u— 0, T —» T, and
W — W,_, or alternatively

F=0 W=W,

(34)

&=1 (35

as H - .

Upon reconsideration of the governing
equations, the boundary conditions, and the
nature of the property variations, the following
independent parameters emerge: T,, T,,, p, and
W,,. It was found more convenient to work with
a somewhat different set of parameters. Let
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T,  denote the saturation temperature of the
vapor in the bulk.f With this, the working
parameters were selected as follows: T,
Taat, o (T — Toar, » W It may be verified that
the total pressure p is readily derivable from
these. The quantity (T, — T, ) is a direct
measure of the degree of superheating.

Thermodynamic and transport properties

A knowledge of the fluid properties is an
essential prerequisite for the solution of the
governing equations. Detailed information
about the properties is available in Appendix
A of the thesis [13] from which this paper is
drawn. Only a brief outline is presented here.

The properties p, p, k, and ¢, of liquid water
were taken from tabulations by Eckert and
Drake [14] to which were fitted high-accuracy
algebraic expressions. For the steam-air mix-
ture, rules derived by Mason and Monchick
[15] from the kinetic theory of transport
properties were employed in the computation
of i, k, D, and a. Values of p and ¢, were calcu-
lated by standard additive procedures.

The properties u, k, and c, of pure air and
pure steam were taken from the NBS tables
[16], except for ¢, of steam, which is avail-
able in algebraic form in the Steam Tables
[17). Air was treated as a perfect gas,
while equation (13) of [17] served as the equa-
tion of state for steam. The latent heat of
condensation h,, and the vapor pressure-
temperature relationship at saturation were
algebraically fitted according to values in the
Steam Tables.

Generally speaking, the property calculations
for the mixture were quite lengthy and complex,
especially those for the tramsport properties.
It is believed that the property values used in
the analysis are the best presently available,

Solutions
Upon reviewing the governing equations,
boundary conditions, continuity conditions,

t That is, corresponding to p, in the bulk.
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and constraints, it is evident that the task of
obtaining solutions is particularly formidable.
The fact that there are two co-existing variable-
property boundary layers which are coupled
by six conditions of continuity and constraint
makes for difficulties well beyond those en-
counted in the typical boundary-layer problem.
Naturally, it was necessary to employ numerical
means to achieve solutions; but even with a
computer such as the CDC 1604, the time
requirement was measurable in tens of hours.

In carrying out the solutions, it was found
convenient to work with integral equations
rather than with differential equations, the
former permitting the direct incorporation of
some of the boundary and continuity conditions.
The integral equations were solved by a special
iterative process which is described in detail in
[13], Chapter 3.

Heat transfer parameters; Nusselt-model refer-
ence temperature
The result of major interest is the heat
transfer to the plate surface (y = 0). Upon
applying Fourier’s Law ¢ = (k dT/0y),~, in
conjunction with the variables defined in equa-
tions (2), there follows

q = k,{g/4xv})* T, 6°0). (36)

The quantity 6(0) is given by the numerical
solution of the governing equations.

It was decided that a meaningful presentation
of results would be achieved by comparing the
heat transfer in the presence of noncondensables,
superheating, interfacial resistance, etc.,, with
that of the standard Nusselt model. In applying
the Nusselt expression, it is necessary to specify
the thermal driving force and the reference
temperature for evaluating the thermodynamic
and transport properties. For the former, it is
reasonable to employ (T, , — 7.). A proper
reference temperature was derived as part of
this investigation.
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To determine the reference temperature,
numerical solutions of the governing equations
(3) for the liquid layer were carried out for
prescribed values of Ty = T, ., ranging from
671-7°R (212°F) to 539-7°R (80°F), that is,
pressure levels ranging from approximately
one atmosphere to 05 psi. For these runs, the
temperature difference (T, — T,) was varied
from 2 degF to 45 degF. The variable-property
heat-transfer results thus obtained were com-
pared with those of the Nusselt constant-
property analysis. It was found that virtual
coincidence between the two sets of results
could be achieved by evaluating all the proper-
tiest appearing in the Nusselt expression at the
reference temperature T* defined by

T* =T, + 031(T; — T,). 37

With the specifications of the preceding
paragraphs, the wall heat flux from the Nusselt
model becomes

q,Nnx — c:('rsat,co - Tw) i gx3 : (38}
hyou* b Pr* 4v*? |-

All of the heat transfer results presented in
this paper are in the form of ¢/gy,. Inasmuch as
both g and gy, are proportional to x~*, this
quantity cancels out of the ratio. In evaluating
the reference temperature, T; is taken as T, .

ANALYSIS OF CONDENSATION WITH
INTERFACIAL RESISTANCE

A widely-accepted model of the condensation
process [2, 5-7, 18-21] states that the saturation
temperature of the vapor adjacent to the surface
of the condensate is different from the tempera-
ture of the liquid at that surface. This tempera-
ture jump is attributed to the simultaneous
process of evaporation and condensation that
take place at the surface. An expression charac-
terizing the temperature jump was derived by
Schrage [18] on the basis of simple kinetic

T Except hy, which is evaluated at T,
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theory.t Schrage’s expression has been reworked
by Balekjian and Katz [19] into a more tractable,
but somewhat approximate form as follows
(see also [7])

g 2 t 14 6hfg
o= — 2 T, — T; .
m (2_ U)(”K?) [ T, (T — T5.1)

(39)

In this equation, ¢ is the condensation coefficient
characterizing the fraction of the vapor mole-
cules striking the liquid surface which actually
condense; evidently, 0 < ¢ < 1. T;, is the
saturation temperature of the vapor adjacent
to the liquid surface {p, ; is the corresponding
saturation pressure of the vapor) and T; ; is
the temperature of the liquid surface.

For the special case in which T; , = T,
(pure, saturated vapor), it is possible to take
account of the inter-facial resistance and still
obtain an exact solution of the condensation
problem. For purposes of comparison, a solu-
tion based on the local-similarity concept will
also be derived for this case. When a non-
condensable gas and/or superheating are in-
volved, then the presence of the interfacial
resistance precludes an exact solution and local
similarity must be employed.

Pure saturated vapor

For this situation, it is only necessary to deal
with the governing equations for the condensate
layer. Inasmuch as a reference temperature rule,
equation (37), has been established, property
variations may be set aside and equations (1)
may be written as

du dv 2%u

o*T
é;+$_0’ PQ‘FFEF—-G*

FEaaiy
(40)

t During the review process, an alternative model of the
interfacial phenomena was brought to the attention of the
authors. The alternative approach, which employs Grad’s
13-moment molecular velocity distribution, is described in
[22]. At this time, there is no clear-cut manner of assessing
which of the models leads to heat transfer results that are
closer to reality.
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These are to be solved subject to the following
boundary conditions, respectively at y = 0 and

y=29
u=v=0 T=T, {41a)
—6220’ m:Q(T:S,v”_ ’Té.L)»
dy
L= Tar o (41b)
where
o 2 N\ pyshy,
o= (o7 ) (57) @

Owing to the fact that T;, is a prescribed
constant, the quantity Q is also a constant.
The condensate temperature T; ; at y = J is an
unknown function of x.

The foregoing set of equations can be solved
without approximation. The details will be
omitted here, and only the essential results are
outlined. The condensate layer thickness § is
given by the following quartic algebraic equation

2 T —
5t +( h4k )53 =f‘_‘L[ﬁlz_( _____ s :"_E__E".)]x (43)
3h; Q2 9

where the second term on the left stems from
the presence of the interfacial resistance. Once
d{x) has been determined from the foregoing,
then the interfacial temperatures jump and the
wall heat flux can be evaluated from

tré,v - E,L = ("T&,v - Tw)// [I +(;j£k&>5] (44)

(45)

All of the liquid properties appearing in the
foregoing equations are to be evaluated at the
reference temperature T* given by equation
(37), wherein T; corresponds to T; ;.

An alternate, but approximate, formulation
may be made by assuming that the expressions
stemming from the Nusselt model can be
applied locally. In essence, this ignores the
history of the flow upstream of the point of
interest. In other words, the similarity solution
is assumed to apply locally. By taking the

q=KT5 1 — T,)6.
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Nusselt expression for &(x) and introducing the
local thermal driving force (T; . — T,) there
follows

54 — ﬁ[cp(n,l‘ B Tw)]x (46)

g Prhy;,

Equations (44) and (45) remain as before, and
the properties are to be evaluated at the reference
temperature. Simultaneous solution of equations
(46) and (44) yield 6 and T ;, and with these,
the heat flux is evaluated from equation (45).

As will be demonstrated in a later graphical
presentation, the wall heat flux results calculated
from the exact solution and from the approxi-
mate local-similarity solution are in very good
agreement. This lends support to the applica-
tion of the local-similarity concept to problems
involving noncondensable gas and/or super-
heated vapor, in which cases similarity solutions
are not possible in the presence of interfacial
resistance.

Noncondensable gas and/or superheating

When applied to the general case involving
noncondensables and/or superheating, the local-
similarity concept leads to the following mathe-
matical description of the problem: The
similarity differential equations (3) and (18-20)
continue to apply, but at a specific x location.
All the boundary, continuity, and constraint
conditions also continue to apply on the same
basis, except for interfacial temperature con-
tinuity, equation (31), which is deleted. In its
stead, one employs the temperature jump
condition, equation (39). When the latter is
rephrased in terms of the variables of the
analysis, there is obtained

[y = [QTx*/3cp, ][6(ns) — OO)] (47)

in which Q is given by equation (42). Inasmuch
as T; ,, 1.e. @(0), is unknown a priori, so also is Q.

The explicit appearance of x * in equation (47)
is a direct indicator of the non-similar nature
of the problem. In order to proceed with the
local-similarity solution, it is necessary to
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specify the x-location of interest. Once this
has been done, the details of the numerical
solution method are only slightly different from
those for the similarity case. After solutions
have been found, the local wall heat flux q is
evaluated as before from equation (36) and then
compared with gy, as given by equation (38).
The reference temperature for the latter is
specified by equation (37), with T; taken as

T;at, o

HEAT TRANSFER RESULTS

Noncondensable gas

The effect of the presence of a noncondensable
gas on the local wall heat flux is displayed in
Figs. 1-5. The first two figures pertain to the
case where the bulk is saturated, that is T, =
Tt - The last three of these figures are for
the situation in which the bulk is superheated.
All the results to be discussed in this section
correspond to the condition where interfacial
resistance and thermal diffusion/diffusion
thermo have been suppressed. These effects
will be discussed later.

Attention is first directed to the results for
the saturated mixture, Figs. 1 and 2. Each one
of these figures is, in turn, subdivided into
separate graphs, and each graph pertains to a
specific value of T, ., in the range from 671-7°R
(212°F) to 539-7°R (80°F). The corresponding
range of the total pressure p is from approxi-
mately one atmosphere to 0-5 psi. In each graph,
there are plotted results corresponding to bulk
concentrations W, of the noncondensable gas
ranging from 0-001 to 0-1. The abscissa is the
temperature difference between the saturated
bulk and the wall.

Inspection of the figures reveals that the
presence of a noncondensable gas has a decisive
effect in reducing the condensation heat transfer.
It is especially interesting to observe that
reductions of more than 50 per cent are sustained
for bulk mass fractions W, as small as 0-5 per
cent. With increasing values of W, the heat
flux decreases monotonically. At a fixed value
of W,, the reduction in heat transfer (relative
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to qy,) is larger as the bulk-to-wall temperature
difference increases, except at small temperature
differences and larger W,. Furthermore, by
making comparisons from graph-to-graph, it
is seen that the effect of the noncondensable
gas is strongly accentuated as the bulk saturation
temperature (i.e. system pressure level) decreases.

The fact that such large reductions in heat
transfer are brought about by such small bulk
concentrations of noncondensable gas can be
made plausible on the following physical
grounds: The vapor that is to be condensed is
carried from the bulk to the interface by con-
vective flow, which also carries with it the
noncondensable gas. However, since the inter-
face is impermeable to the noncondensable
gas, it must be removed from the interface at
the same rate at which it arrives. This removal
is accomplished by a diffusive flow back into
the bulk. Inasmuch as the magnitude of the
diffusive flow depends on the magnitude of
the concentration gradient, it is evident that
the interfacial concentration of the noncondens-
able gas must build up to a level sufficient for
the balance between the convective inflow and
diffusive backflow.

The buildup of the noncondensable gas at
the interface causes a corresponding reduction
in the partial pressure of the vapor at the
interface. In turn, this reduces the saturation
temperature at which the condensation takes
place. The net effect is to lower the effective
thermal driving force (T; — T,,) thereby reduc-
ing the heat transfer.

All of the trends that were enumerated in
connection with Figs. 1 and 2 can be explained
in light of the foregoing arguments, except for
the droping off of the curves at small (T, ,, —
T,) and larger W,,. This latter behavior occurs
because T; approaches closely to T,, for small,
non-zero values of (T,,, , — T,,).

Consideration will now be given to the effect
of noncondensable gases for the case of super-
heated vapor, Figs. 3-5. Each one of these
figures pertains to a specific value of W_,
respectively 0-005, 0-02, and 0-1. Furthermore,
4D
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FiG. 3. Condensation heat transfer in the presence of a non-

condensable gas, superheated bulk, W,, = 0-005.

each figure is subdivided into 3 grids. Each grid
corresponds to a given value of T, .. The
various curves that are plotted within each
grid are parameterized by the degree of super-
heating, (T,, — T, »,)- The ordinate is the ratio
of the heat flux g to the Nusselt value gy, the
latter corresponding to (T, ., — T,,) as thermal
driving force. The abscissa remains as before.

Careful inspection of these figures reveals
that all of the qualitative effects stemming from
the presence of the noncondensable gas are
identical to those already enumerated for the
case of saturated mixtures. The plausibility
arguments previously advanced continue to
apply. The reduction in heat transfer due to the
noncondensable gas is somewhat lessened owing
to the opposite effect of superheating. This
aspect will be brought out more strongly in the
next section.

As a final note, it is well to reiterate that the
large reductions in heat transfer that have
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thus far been discussed in connection with
Figs. 1-5 are due entirely to the diffusional
resistance of the mixture.

Superheating
Consideration is first given to the effect of
superheating a pure vapor. To this end, Fig. 6
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Fi16. 6. Condensation heat transfer for pure superheated
vapor.

has been prepared. The figure contains five
grids, each for a different value of T, .. In
each grid, results are shown for superheats of
100 degF, 200 degF, and 400 degF. On the
ordinate, q is normalized by gy, the latter
corresponding to zero superheat. Thus, the
deviation of the curves from unity is a direct
measure of the increase in the wall heat transfer
due to superheating.

The figure shows that superheating brings
about only a slight increase in the heat transfer
during the condensation of a pure vapor.
Furthermore, for a given degree of superheating,
q/qy. is almost independent of T, ., and of
(T, » — T,,). However, when the latter takes
on very small values, it is expected that g/qy,
will become large, owing to the diminution of
the condensation rate (ie. gy, — 0} Such a
trend is suggested by the uppermost curves in
the top two grids of the figure.
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It is interesting to compare the present results
with those of Sparrow and Eckert [4], who
neglected both free convection and variable
properties in the superheated vapor. For
example, for the case of 400 degF superheating
and T, ., = 671'7°F, the latter investigators
predict g/qy, = 1:045, which compares favor-
ably with the present value of 1-047. This
suggests that, at least for the case of a pure
vapor, the role of free convection is insignificant.

Attention may next be directed to the effect
of superheating in the case when a noncondens-
able gas is present, and for this, one returns to
Figs. 3-5. The structure of these figures has
already been explained. Study of the figures
indicates that for given values Ty, »» (Toag 00 —
T.), and W_, the percentage increase in heat
transfer due to superheating (i.e. relative to
zero superheating) is substantially larger than
in the case of a pure vapor (Fig. 6). This is
especially true for high T, ., small (T, . —
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T,), and low W, Indeed, for these conditions,
the absolute increase in ¢ due to superheating
far exceeds that for the pure vapor.

Thus, the present results show that while
superheating is very nearly a negligible effect
in the case of pure vapors, it may be an important
factor during the condensation of vapors that
contain a noncondensable gas.

Interfacial resistance

It is revealing to consider first the effects of
interfacial resistance on the condensation heat
transfer of a pure saturated vapor. This informa-
tion is shown in Fig. 7. Owing to the fact that
the presence of interfacial resistance precludes
similar solutions, it is necessary to specify the
x-location for which results are desired. The
left-hand portion of Fig. 7 corresponds to
x =05 ft, while the right-hand portion cor-
responds to x = 3 ft.

The figure is subdivided into several grids,
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Fio. 7. Effect of interfacial resistance on the condensation heat transfer of pure
saturated vapor,
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each of which contains curves for a specific
value of T, .. The solid lines represent the
exact solution, while the dashed lines are for
the local-similarity solution. When the two
solutions are essentially coincident, then a
dot-dashed line is used. The curve parameter o
is the condensation coefficient. Inasmuch as
gy, is based on (T, ,, — T,) as thermal driving
force, the deviation of the curves from umity
is a direct measure of the role of interfacial
resistance.

From an inspection of the figure, it is seen
that the effect of the interfacial resistance is
most in evidence at very small values of ¢ and
at low T, . and (T, , — T,). On the other
hand, the interfacial resistance is fully negligible
at the higher T, , (higher pressures), no matter
what the value of o. Furthermore, if ¢ is 0-35
or greater, then the interfacial resistance plays
no role, regardless of the values of T, . or
(T « — To,). All of the aforementioned trends
can also be deduced by physical reasoning with
the aid of equation (39).

1t is appropriate, at this point, to consider the
available information for ¢. Values for ¢ of
approximately 0-04 have been given by several
investigators [20, 21]. However, the very recent
results of Nabavian [21] suggest that a more
probable range for ¢ is 0-35-1-0. Even more
recently, Mills [22] performed a condensation
experiment with pure saturated steam and
showed that ¢ is essentially unity. In addition,
it is demonstrated in [22] that the experiments
of Hickman are consistent with a ¢ of unity.
If one adopts the o values from these most
recent studies, then it would appear that the
effect of interfacial resistance can be neglected.

A comparison of the solid and the dashed
curves appearing in Fig. 7 shows that the
differences between the exact solution and the
local-similarity solution are, for all practical
purposes, negligible. This finding lends support
for the use of the latter model for the case
wherein noncondensables and/or superheating
are present.

As a final comment in connection with Fig. 7,

W. J. MINKOWYCZ and E. M. SPARROW

it may be observed that the effect of the inter-
facial resistance decreases with increasing dis-
tance from the leading edge. This is readily
explained by noting that the condensation
rate r1 decreases with increasing x, and in
accordance with equation (39), the temperature
jump decreases correspondingly.

A presentation similar in form to Fig. 7, but
for the case of a pure vapor with 400 degF
superheat, is presented in Fig. 8. The results
displayed in the figure are based on the local-
similarity concept, inasmuch as an exact solution
cannot be attained. The trends that are in
evidence in this figure are identical to those
discussed in connection with Fig. 7 and need
not be repeated.

For cases in which there is a noncondensable
gas and/or superheating, the effect of the
interfacial resistance is displayed in Figs. 1, 2,
and 4. Inasmuch as the g/qy, values correspond-
ing to the presence of interfacial resistance were
found to fall very close to those without this
effect, the former are plotted as discrete points
so as to maintain their separate identity. In
order to exaggerate the role of interfacial resis-
tance, points corresponding to ¢ = 0-04 are
shown. If results for ¢ = 1-0 had been plotted,
then the points would have fallen squarely on
the solid curves. It is evident from an inspection
of these figures that the interfacial resistance
plays a negligible role in the condensation of
steam when air is present as a noncondensable
gas.

Thermal diffusion and diffusion thermo
Solutions including thermal diffusion and
diffusion thermo were carried out for cases
corresponding to the extreme values of the
independent parameters; interfacial resistance
was suppressed. The heat transfer results stem-
ming from these solutions are plotted as discrete
points in Fig. 9 in order to preserve their
identity. The solid curves represent results
wherein thermal diffusion and diffusion thermo
are absent. It is seen from the figure that the
points are essentially coincident with the curves,
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the condensation heat transfer of pure

superheated vapor.

thereby indicating that the thermal diffusional
phenomena are of no significance in this
situation.

Comparisons with others

Within the knowledge of the authors, the
only systematic experiments on the condensa-
tion of steam with air as a noncondensable
were performed by Othmer [23]. The experi-
mental apparatus consisted of a cooled horizon-
tal cylinder situated in an enclosure containing
a saturated mixture of steam and air at essentially
one atmosphere. Measurements were made of
the overall rate of heat transfer Q for a range of
surface temperatures T,

Inasmuch as the physical system of the
experiment differs from that investigated here,
the only reasonable comparison is of Q/Q,
values, where Q, is the overall condensation

rate in the absence of noncondensables.t Un-
fortunately, the experimental determinations
of Q and Q, were, in general, not performed at
the same value of (7, , — T,), and after
appraisal of the data, it was decided that
interpolation would not lead to reliable re-
sults. Only at a temperature difference of
10 degF were the Q and @, both available. The
corresponding experimental points are shown
in Fig. 10. Also shown as solid lines are the
Q/Qy, predictions of the present analysis.
The level of agreement is about as good as can
be hoped for in view of the difficulty encountered
in performing such experiments and of the
differences in the physical system investigated.
There are also shown in the figure dashed
lines that represent the predictions of the

+ For the analytical results, Qg = Qu,.
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constant-property analysis of Sparrow and
Lin [10]. At first glance, it appears that the
constant-property resalts are in better agreement
with the data than are the present results.
However, this is illusory, since the property
values used in parameterizing the constant-
property analysis are somewhat different from
those appropriate to the specific situation under
consideration, especially in the case T, . =
671-7°R. This difficulty arises because the
constant-property analysis cannot be readily
tailored to fit any arbitrary case of interest.
However, it can be reasoned that if the appro-
priate property values are employed, the predic-
tions of the constant-property analysis are
shifted downward toward those of the analysis.

REPRESENTATIVE TEMPERATURE PROFILES

Some ingsight into the role of the various
transport processes can be obtained by inspec-
tion of the boundary layer temperature profile.
To this end, two represeniative temperature
profiles are displayed in Fig. 11. Both profiles
correspond to saturated vapor at T, , =
539-7°R and W, = 0-02. The temperature dif-
ference between the fluid bulk and the wall is
10 degF. The uppermost temperature profile is
for the case ¢ = 0-04, while the lower profile
is for ¢ = 1-0.

In preparing the figure, it was decided that a
better physical feel would be obtained if dimen-
sional quantities, rather than dimensionless
quantities, were employed as ordinate and
abscissa variables. Inasmuch as the thickness
of the condensate layer (~0001 in) is three
orders of magnitude less than the thickness of
the vapor-gas boundary layer, a broken abscissa
scale had to be employed.

Upon considering the figure, it is seen that
the largest part of the overall temperature drop
between the bulk and the wall occurs within the
vapor-gas boundary layer. This underscores
the decisive role of the diffusional resistance
in the vapor—gas boundary layer. The interfacial
resistance, although exaggerated by a small
value of o (=004) and a low value of T, ..
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Fi1G. 11. Representative temperature profiles.

gives rise to a temperature jump that is much
smaller than the temperature difference due to
the diffusional resistance. It is also interesting
to note that (T;,, — T,) is almost identical in
the two cases, in spite of the fact that a tempera-
ture jump is present in one and not in the other.

Representative mass fraction profiles have
been presented in [13], but must be omitted
here owing to space limitations.
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Zusammenfassung—Fine eingehende analytische Untersuchung der laminaren Filmkondensation wird
vorgelegt. Untersucht wird eine isotherme senkrechte Platte mit Wasserdampf als kondensierendes
Medium und Luft als Inertgas. Neben dem Inertgas schliesst das analytische Modell den Ubergangswider-
stand, die Uberhitzung, die freie Konvektion und die Diffusion infolge von Temperatur- und Konzentra-
tionsgradienten und die veriinderlichen Eigenschaften sowohl im Fliissigkeits- als auch im Gas-Dampf-
Bereich mit ein. Ergebnisse fiir den Wirmeiibergang werden fiir einen weiten Umfang von Parametern
erhalten, nimlich die Massenkonzentration des Inertgases, die H6he des Systemdruckes, die Temperatur~
differenz zwischen Kithifliche une Dampfraum und den Grad der Uberhitzung. Es wird gezeigt, dass
eine geringe Massenkonzentration an Inertgas eine entsheidende Wirkung auf den Wirmeiibergang
haben kann. Zum Beispiel wird fiir einen Massenanteil von 0,5 Prozent an Luft der Wirmeiibergang
um 50 Prozent oder mehr vermindert. Der Einfluss des Inertgases tritt bei niedrigen Drucken noch stirker
hervor. Es zeigt sich, dass die zuvor erwihnte Herabsetzung des Wirmeiibergangs vollkommen vom
Diffusionswiderstand der Gas-Dampf-Grenzschicht verursacht wird. Der Ubergangswiderstand ist,
wie gezeigt wird, ein Effekt 2. Ordnung Ahnliche Ergebnisse rithren vom Thermodiffusions- und vom
Diffusionsthermoeffekt her. Der Einfluss der Uberhitzung, der sehr gering fiir ginen reinen Dampf ist,
wird bei Vorhandense in eines nichtkondensierbaren Gases sehr viel bedeutsamer. Eine Regel fiir die
Bezugstemperatur wird abgeleitet, um das Nusselt-Modell auf Bedingungen mit verinderlichen Figen-
schaften zu erweitern.

Anroranma—Jlaerca 061INPHOE AHATHTHYECKOE MCCIAENOBAHME JIAMHHAPHOR nienku, obpa-
ayomelics npu KougencanuMm. PaccMarpuBaercr ciydall M30TEPMHYECKOH BepTURAIBHOM

TIAACTHHBL,
HEKOHJEHCHPYIOWEro rasa.

obTexaemoi KOHACHCHPYOIIMMCA MapoOM IIPpM HAaJAKXYuKM BO3AYXa- B KavecTBe
KpOMe HEKOHAGHCHPYIOLIETO 1'ada aHAJINTUYECKaRs MOAelb

BRIIOYAET TaxKe CONPOTHBACHNE HA FpaHulie pasgena $as, neperpes u cBOGOKHYIO HOHBOK-
nuio, o0yCJOBREHHYI TPAjAMeHTaMu TeMHEPATYpH M KOHUBHTPALMH, MACCOBYIO M TePMU-
geckyo auddysunio, a TaNKe nepeMeHHNe CROMCTBA KAK B JKMIKOCTH, TAK M B ragonaposoit
cMecy. Jlanube no TennoolMeHy NONYYeHH JJIA WMPOKOIO JMANA30HA ADUMETPOB, BKIIO-
YAOHHX MacCOBYI0 KOHNEHTDAUMIO HEHOHIEHCHPOBAHHOTO ras3a, ASBIEHME B CHCTEME,
PasHOCTR TeMIepaTyp Mesmjy cpexoit u creHxo#t u cremeHb neperpeBa. [ToxkasmBaercs, 4To
neGoabline MACCOBHE KOHUEHTDAUMH HEKOHICHCHDYIOIIETOCH TA33 MOUYT BHAYMTEILHO
BAMATHL HA CKOpPOCTh TendooGmena. Hanpumep, A3 MaccoBof HKOHHEHTpAWUHM BOBKYXA
{0,5% ) naGmionaerca ymenbiienue Temnoobsena Ao 50% u Goaee. BamAHue HeKOHECHCH-
PYIOHIEr0 rasa BPOABNNETCH NpPHM HUBKNX AasBnenusx. [TowkasaHo, 4To yxasauuoe BHUIE
yMeubilenne TennooiMeHa NPONCXOOUT NOJHOCTHIO 38 CUéT nwd)@ysuounam CONPOTHBICHUA
CJIOA HA rpaHuue ras-nap. ConpoTuBieHMe Ha rpaHule pazgena §as uMeeT BTOPOCTENEHHOE
BHAYeHMe. AHANOFUYHBIR MOXXOX NPUMEHAETCA K Tepmuveckod auddysunm m Tepmonmnd-
¢yauoHomMy conporunieHnio. Bamanne meperpesa, KOTOpOe O4YeHbL MAJ0 B ciydae YHCTOrO
napa, CTAaHOBUTCA 3HAMMTENLHBIM NPU HAJMYMM HEeROHAEHCupywouerocs rasa. {as npu-
Menepns uncia Hyccempra K yCHOBHAM HepeMeHHHX CBONCTB, BHIBEJEHO NPABMIIO HAXOM-
JeHuA ONpeRessionel TeMIepaTyphl.



