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Abstrwt-4 wide-ranging analytical investigation of Iaminar film condensation is presented. The situation 
under study is an isothermaf vertical plate with steam as the condensing vapor and air as the noncondensabte 
gas. In addition to the noncondensable gas, the analytical modet includes interfacial resistance, super- 
heating, free convection due to both temperature and concentration gradients, mass diffusion and thermal 
diffusion, and variable properties in both the liquid and the gas-vapor regions. Heat-transfer results are 
obtained for a wide range of parameters including bulk concentration of the noncondensable gas, system 
pressure level, wall-to-bulk temperature difference, and degree of superheating. It is demonstrated that 
small bulk concentrations of the noncondensable gas can have a decisive effect on the heat-transfer rate. 
For instance, for a bulk mass fraction of air equal to 0.5 per cent, reductions in heat transfer of 50 per 
cent or more are sustained. The influence of the noncondensabte gas is accentuated at lower pressure levels. 
It is shown that the aforementioned reductions in heat transfer are due entirely to the d~ffusjona~ resistance 
of the ga~va~r boundary layer. The interfacial resistance is shown to be a second order effect. A similar 
finding applies to thermal dj~usion and diffusion thermo. The effect of su~rheatjng, which is very small in 
the case of a pure vapor, becomes much more sign%cant in the presence of a nonconden~b~e gas. A refer- 

ence temperature rute is deduced for extending the Nnsselt model to variable-property conditions 

NOMENCLATURE 

constants, equations (16) and (2b) ; 
specific heat, constant pressure ; 
binary diffusion coefficient ; 
dimensionless stream functions ; 
acceleration of gravity; 
Iatent heat of condensation ; 
diffusive mass flux, equation (9); 
thermal conductivity; 
molecular weight ; 
interface mass flux ; 
tot al pressure ; 
vapor pressure ; 
Prandtl number, c&k ; 
wall heat flux; 
generalized heat fiux, equation (11); 

gas constant ; 
Schmidt number, vjD; 
temperatnre ; 
bdk saturation temperature; 
bnlk tem~ratnre ; 
wall temperature ; 
interface temperatnre; 
reference tem~ratlire, equation (37) ; 
velocity components; 
mass fraetion ; 
coordinates. 

5 Present address: Department of Energy Engineering, 

Greek symbols 

:: 
thermal diffusion factor ; 
condensate film thickness; 

H, ?, similarity variables ; 
8,8, dimensioniess tern~mt~~re ; 

University of fflinois at Chicago Circle, Chicago, Ithnois tty absofute velocity ; 
60680. v, kinematic viscosity ; 

1125 



1125 W.J. MINKOWYCZ and E. M.SPARROW 

P* density ; 

0, condensation coefficient ; 
rP, i-p7 property ratios ; 
\p, I&, stream functions. 

Subscripts 

87 noncondensable gas ; 

Nu, from the Nusselt model ; 
L’ , vapor ; 

MJ, at the wall ; 

6, at the interface ; 

i;o. in the bulk. 

INTRODUCTION 

Frr..~ ~~N~~Ns~~I~N on isothermal vertical 
surfaces has been a subject of active ana~ytjcai 
study since the pianeering analysis of Nusselt 
[l]” In the intervening years, the various simpli- 
fying assumptions embodied in that first in- 
vestigation have been relaxed so that, with 
certain reservations, the solution of Nusseft’s 
probiem may now be regarded as complete. 
An extensive bibliographical survey of contribu- 
tions to this problem area has been prepared by 
Wilhelm [Z]. The physical situation studied by 
Nusselt and in various succeeding investigations 
is, perhaps, the simpIest of all problems in 
laminar film condensation: namely, a pure, 
quiescent, saturated vapor condensing on an 
isothermal vertical plate. 

A class of condensation problems of much 
greater complexity is encountered when con- 
sideration is given to vapors which contain non- 
condensable gases. In such situations, concentra- 
tion and temperature gradients are set up in the 
vapor-gas mixture (temperature gradients will 
occur if the vapor component is at its saturation 
state). ~orrespondingly~ buoyancy forces, owing 
to both concentration and temperature differ- 
ences, are created. Furthermore, the thermo- 
dynamic and transport properties of the vapor- 
gas mixture may experience large variations. A 
full description of the transport processes in the 
mixture requires that the conservation equations 
for mass, energy, momentum, and species be 
written in their variable property forms. The 

dynamic interaction oftheaforementioned trans- 
ports in the vapor--gas mixture produces a tem- 
perature at the liquid-vapor interface that is 
lower than the saturation temperature of the 
bulk vapor. 

Another physical mechanism of potential 
importance is the so-called interfacial resistance. 
This phenomenon may occur for both pure and 
impure vapors, but its analytical evaluation is 
much more formidable in the latter case. In 
brief, the interfacial resistance results from the 
fact that the net condensation of vapor at the 
interface is actually the difference between the 
simultaneous processes of evaporation and con- 
densation. The kinetic theory ofgases shows that 
an unbalance between these two processes 
must be accompanied by a temperature jump 
at the interface, whence the additional thermal 
resistance. 

Another departure from the classical Nusseft 
model is encountered when the vapor is super- 
heated. Although the effect ofsupe~heatingon the 
condensation heat transfer rate is expected to 
be small in the case of a pure vapor, it may well 
be appreciable when factors such as non- 
condensable gases and interfacial resistance act 
to reduce the rate of condensation. 

Whenever there are concentration and tem- 
perature gradients in a gas mixture such as occur 
during the condensation of an impure vapor, the 
processes of thermal diffusion and diffusion 
therm0 come into play. The first of these is a 
transport of mass owing to a temperature gradi- 
ent, while thesecond is an energy transport owing 
to a concentration gradient. In certain technic- 
ally-important problems, for example, mass- 
transfer cooling, these processes have a signili- 
cant influence on the surface heat transfer. Their 
effecr on the condensation of impure vapors is. 
as yet. unexplored. 

This investigation is concerned with the in- 
fluence of all of the aforementioned processes 
and conditions on laminar condensation on an 
isothermal vertical plate. The extent to which 
these factors affect the condensation heat trans- 
fer is systematically studied as a function of the 
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system pressure level. In view of its technical 
importance, steam was selected as the condensing 
vapor for the present investigation, with air as 
the noncondensable gas. 

Inasmuch as such a wide range of effects is to 
be dealt with, it appears advantageous to list the 
main lines of the present research. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Pure vapor : (a) interfacial resistance ; 
(b) superheating. 
Noncondensable gas : (a) with and without 
interfacial resistance; (b) with and without 
su~rheating. 
Superheated vapor: (a) with and without 
interfacial resistance; (b) with and without 
noncondensable gas. 
Interfacial resistance : (a) saturated and 
superheated pure vapor ; (b) saturated and 
superheated vapor with a noncondensable 
gas. 
Thermal diffusion and diffusion thermo: 
(a) saturated and superheated vapor with a 
noncondensable gas. 
Variable property effects in the condensed 
liquid layer. 

In all of the aforementioned cases in which 
there are temperature (and concentration) gra- 
dients within the vapor (and the vapor-gas 
mixture), variable fluid property variations were 
fully taken into account, as was the buoyancy 
force which creates a free convection motion. As 
noted in the foregoing item (6), variable property 
effects in the condensate layer were also in- 
cluded in the analysis. A reference temperature 
rule was evolved which serves to extend the 
Nusselt model. 

Limited aspects of the just-described research 
program are treated in the literature by approxi- 
mate models. The effect of superheating a pure 
vapor has been studied by Stender [3] and by 
Sparrow and Eckert [4], respectively with a one- 
dimensional model and a boundary-layer model. 
In both cases, free convection, variable proper- 
ties, and interfacial resistance were omitted from 
the analysis. Silver [S, 61 employed Stender’s 
model for analyzing the effect of interfacial 
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resistance on the condensation of a pure, super- 
heated vapor. In the case of a pure, saturated 
vapor, Sukhatme and Rohsenow [7] computed 
the effect of the inter-facial resistance by local 
application of the results of the Nusselt analysis. 

Various semi-empirical analyses and compu- 
tation methods have been proposed for predict- 
ing the condensation heat transfer in the presence 
of noncondensable gases ([8,9] or standard heat 
transfer textbooks). Very recently on the basis 
of the conservation laws alone, Sparrow and 
Lin [lo] analyzed the condensation of saturated 
steam-air mixtures. However, variable fluid 
properties, temperature-induced buoyancy, and 
interfacial resistance were not accounted for in 
that analysis, nor were the processes of thermal 
diffusion and diffusion thermo, which occur 
naturally in a vapor-gas mixture. 

The variation of the fluid properties within 
the condensate film are generally neglected in 
analytical studies of condensation heat transfer. 
However, in the actual application of the heat 
transfer results from such a model, it is common 
to evaluate the liquid viscosity at a reference 
temperature equal to the wall value plus one- 
quarter of the temperature difference across the 
film [ll]. The choice of such a reference tem- 
perature appears not yet to have been sub- 
stantiated by detailed numerical computations. 

Consideration of the just-discussed directly- 
pertinent literature suggests the need for a 
broad-ranging, in-depth study such as is reported 
here. 

In the presentation that follows, it is con- 
venient to subdivide the analysis into two por- 
tions, one dealing with condensation in the ab- 
sence of interfacial resistance and the second 
dealing with condensation in the presence of 
interfacial resistance. This subdivision is natural 
inasmuch as the former situation yields simi- 
larity solutions of the appropriate boundary 
layer equations, while the latter does not. 

ANALYSIS OF CONDENSATION WITHOUT 

INTERFACIAL RESISTANCE 

Consideration is given to an isothermal 
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vertical plate situated adjacent to a large body 
of otherwise quiescent vapor. The vapor may 
either be at its saturation state or be superheated. 
Furthermore, the vapor may contain arbitrary 
amounts of a noncondensable gas. When the 
plate temperature is maintained at a value below 
the saturation temperature, condensation will 
occur. It is assumed that the condensate forms a 
smooth film? which flows downward along the 
plate under the influence of gravity. It is natural 
to regard the condensate film as a boundary 
layer. 

The condensation process activates the trans- 
port of mass, momentum, energy, and species in 
the vapor-gas mixture adjacent to the con- 
densate film. The region in which these trans- 
ports occur may also be regarded as a boundary 
layer. Thus, there are a pair of co-existing, inter- 
acting boundary layers, one in the liquid and one 
in the vapor-gas mixture. It is convenient to 
formulate the governing equations separately 
for the two boundary layers, and then to couple 
them by applying conditions of compatibility 
at the interface. 

The coordinates that are employed in the 
analysis are as follows: x measures distances 
(vertically downward) along the plate, with x = 0 
coinciding with the leading edge; y measures 
distances normal to the plate. The corresponding 
velocity components are u and u. The thickness 
of the condensate layer is defined as y = 6(x). 

Liquid bleary layer 
The transport processes in the liquid boundary 

layer are governed by the laws of mass, momen- 
tum, and energy conservation. There is no diffi- 

layer equations. However, it has been demon- 
strated [12] that the inertia terms and the energy 
convection terms have a negligible effect on heat 
transfer for the range of parameter values: 
appropriate to steam. In view of this, one may 

t The effect of ripples is to increase the heat transfer; this 
is discussed in [24]. 

$ i.e. values of cp(TS., - T,)/h,,Pr. 

employ a simplified set of boundary layer equa- 
tions as follows 

(lb) 

The continuity equation is identically satis- 
fied by introducing a stream function +, which, 
in turn, may be reduced to a similarity stream 
function f that depends only on a single inde- 
pendent coordinate ‘1. The appropriate defini- 
tions are 

1 a* 
’ = ‘p,ay’ 

*_ -9 
- ‘pP ax' 

@ = 4v,cx*J(rl) (2a) 

6’ =; (2b) 
m 

in which a dimensionless temperature variable 0 
has also been introduced. Upon carrying out the 
foregoing transformation of variables, the con- 
servation laws are reduced to a pair of ordinary 
differential equations 

[ 
‘pll .f 

I r I 

( >I --- 
f ‘pp = 0, ( > (Pk@ ’ = 0 (3) 

CPP 

where the primes denote derivatives with respect 
to q and 

‘pp = g. 
w 

(Pk =) (4) 
w 

the cp are temperature-dependent functions. 
The boundary conditions appropriate to 

equation (3) will be described later. For future 
reference, it is convenient to derive expressions 
for the streamwise velocity ud at the liquid- 
vapor interface and for the mass flow per unit 
area ri2 crossing the interface. The former follows 
directly from equations (2) as 

u* = 4v c2x% f' - w 
0 

, 
cp P *la 
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The quantity ti is related to the velocity com- 
ponents u and v as follows 

& dx = (pa da - pv dJc),. (6) 

Upon introducing the transformed variables, this 
becomes 

(7) 

Vapor-gas boundary layer 
There is a considerably wider range of trans- 

port processes taking place in the vapor-gas 
boundary layer than in the just-discussed liquid 
boundary layer. The additional processes in- 
dude diffusional mass and heat transfers and 
free convection. 

In a two-component gas mixture, it is con- 
venient to represent the local concentrations of 
the components in terms of their mass fractions 
W. These are defined as 

w, = P&P* W” = PdP @a) 

where p is the local density of the mixture and 
p# and py are, respectively, the local densities of 
the gas and the vapor. Since p = p# + p”, it 
follows that 

wB+ w,= 1. (gb) 

In view of equation (8b), W# and W, are not inde- 
pendent, and one of them may be eliminated 
from the problem. In this analysis, it has been 
decided to retain W# and to drop its subscript; 
therefore, in what follows, W, = W. 

Owing to concentration and temperature 
gradients, a diffusive mass flux j (per unit time 
and area) is induced. For instance, the diffusive 
mass tlux of the gas, denoted by js, is 

je= -pD 
[ 

aw 
---+ 

~w(i - w)a7- - 
ay T ay 1 (9) 

in which D is the binary diffusion coefficient and 
01 is the thermal diffusion factor.? The first term 
--___ ---- -.- 

?This is not to be confused with the thermal diffusivity 

Wpc, 

within the brackets is the well-known mass 
diffusion, while the second term represents ther- 
mal diffusion. A similar expression can be 
written for the diffusive flow of the vapor, j,. 
Upon noting that the value of bl appearing in the 
js equation is the negative of that appearing in 
the j, equation, it is seen that 

j, = -je (10) 
The generalized heat flux q* per unit time and 

area in a binary mixture includes both convect- 
ive and diffusive contributions and is given by 

q* = -kc + aRT&j# 
ay 

(11) 
# fl 

in which R and M respectively denote the local 
gas constant and molecular weight of the mix- 
ture, while M, and M, are the molecular weights 
of the components. The first term in equation 
(11) is immediately recognized as the conven- 
tional Fourier conduction, while the second term 
represents diffusion thermo. 

In a binary mixture, mass must be conserved 
for each of the components. This requirement 
may be satisfied by writing a diffusion equation 
for each of the species, or alternatively a con- 
tinuity equation for the mixture and a diffusion 
equation for one of the species. The latter ap- 
proach is somewhat more convenient and will 
be employed here. 

Consideration may now be given to the boun- 
dary-layer equations for the vapor-gas region. 
The equations of continuity, diffusion, momen- 
tum, and energy may be respectively written as 

(12) 

( aw aj, p Uax+Uay p(~~+~~)aw > 

=-F (13) = dP - Pm) 

a 
+dy p”ay ( > a* (14) 
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wp(ug + dg)+ (cp, - i:,,,i,;; = 
in which 

The generalized diffusive mass flux and heat flux, 
j, and q* respectively, are given by equations (9) 

/t = ClR” $I& ;: + [ 
(‘I& 9 1 ( 1 

and (11). The quantity, g(p - p,), appearing in 
equation (14) is the buoyancy force, which in- 

and 

duces a free-convection motion. This term is to Q = _‘_ 
be retained as written; that is, the usual linear IJ pGo’ 

Qk III ;, QV = rL> 
CC, I& 

density-temperature approximation will not 
be made. Another somewhat novel term is the 
quantity (cpg - c,,)j,(aTj~?y) in equation (15). 

CJE = .cp 
C 

This represents a net enthalpy flux owing to the 
diffusion currents j, and j, (= -j,). 

The foregoing conservation equations can be 
reduced to a set of ordinary differential equations 
by employing a similarity transformation as 
follows 

Y = 4v,Cx’F(H), H = 5. ’ dy s ~~ 
xi @,’ 

6 

(16) 

in which Y is a stream function that satisfies 

The end result of the transformation is 

(;‘I + 3&F(g) = -F’ (18) 

+ @,(l - @J 1 = 0 (19) 

3@,F + QCg”$ 0’ = ') 
- Pr,(A’ + @EgVrO’) (20) 

(21a) 

(21b) 

(21c) 

(21d) 

The quantities SC and Pr respectively represent 
the local mixtureSchmidt and Prandtl numbers. 
All of the thermodynamic and transport proper- 
ties appearing in the foregoing equations are 
functions of the local temperature and concen- 
tration of the mixture. The primes denote 
differentiatiok with respect to H. 

Upon reconsideration of equations (18) and 
(20), it is seen that the non-zero right-hand sides 
are due exclusively to the thermal diffusionjdif- 
fusion therm0 effects. When these phenomena 
are suppressed, as in a majority of the cases 
studied here, then the corresponding right-hand 
sides are equated to zero. Even with this simpli- 
fication, equations (18) through (20) remain a 
highly-coupled, highly non-linear, seventh-order 
mathematical system. The solution of this 
system and its coupling to the equations of the 
liquid layer are discussed later. 

In order to facilitate the aforementioned 
coupling, it is useful to derive expressions for the 
velocity u6 and the mass flux &l of the vapor- 
gas mixture that crosses the interface per unit 
time and area. From equations (16) and (17), 
there follows directly 

U6 = 4v c2x+ F’- ‘n 
( ) @,@Q ll=O’ 

(22) 
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In deriving an expression for the mass flux, cog- 
nizance must be taken of both diffusive and con- 
vective components and of the contributions of 
both species. To this end, one writes 

and 

ni = ni, + I&, (23) 

where the quantity in parentheses is the con- 
vective mass flow andj is the diffusive mass flow. 
Upon combining the foregoing equations and 
noting that pg + pV = p, jg + j, = 0, there is 
obtained 

(25) 

Then, after transformation in accordance with 
equations (16) and (17) this becomes 

Attention will now be directed to the boun- 
dary conditions and to the conditions of con- 
tinuity and constraint at the interface. 

Boundary and interface conditions ; governing 
parameters 
To complete the statement of the problem, it 

remains to specify conditions at the plate surface, 
at the liquid-vapor interface, and in the bulk 
of the vapor-gas mixture. 

At the plate surface (y = 0), the temperature 
T, is prescribed and the velocity components u 
and u are zero. In terms of the transformed 
variables, these become 

f=f’ = 0, 0 = 0, (27) 

at n = 0. 
At the interface, there are both continuity 

and constraint conditions. In general, the inter- 
facial shear, the streamwise velocity, the mass 
flux, the temperature, and the energy flux must 
be continuous at the interface. With respect to 

the interfacial shear, it has been demonstrated 
[12] that the neglect of the continuity require- 
ment has a completely negligible effect on the 
heat-transfer results for the range of parameters 
appropriate to condensing steam. Furthermore, 
owing to the lower condensation rates associated 
with the presence of noncondensable gases, the 
application of this finding in the present analysis 
is fully justified. It is thus sufficient to impose the 
Nusselt condition of negligible shear at the edge 
of the liquid layer, that is, p du,@y = 0 at y = 6 

(s = ~~1% or 

( > 
s LO. (28) 
VP 

The continuity of the streamwise velocity u6 
is implemented by equating expressions (5) and 
(22), which gives 

(f’/4$& = (F’Pfl@0)0 (29) 

Similarly, the continuity of the mass flux is 
achieved by requiring that ri? = & and using 
equations (7) and (26) 

Temperature continuity is imposed by writing 

WI,) = W). (31) 

In order to formulate the condition of energy- 
flux continuity, it is convenient to consider a 
control volume that envelopes the interface. An 
accounting of the various energy transports leads 
to 

= nib,, - q* (321 

in which h,, is the latent heat of condensation 
and q* is the generalized heat flux as given by 
equation (11). In deriving equation (32), it has 
been assumed that the interface is impermeable 
to the noncondensable gas. Upon rephrasing 
equation (32) in terms of the variables of the 
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analysis, one linds 

P&w +c Pr, ( > -__ -~~(~~~)~~ = 
PC&, w 

3Pr,h;; 
-rF(O) + >@’ 

( ) 
-t- Pr,.4(0). (33) 

Pm m u 0 

In addition to the foregoing continuity re- 
quirements, there are two conditions of con- 
straint at the interface. The first is that the 
interface is impermeable to the noncondensable 
gas ; that is &f, = 0. Upon applying this condi- 
tion to equation (24) and introducing the 
transformed variables, there is obtained 

[,,,.(~.~~I~ =o. (34) 

The second constraint is that the interface 
be a saturation state for the condensing vapor. 
In effect, this condition provides a connecting 
link between the interface tem~rature G and 
the interface mass fraction W. This relationship 
may be illuminated as follows: For a given 
interface temperature T,, the corresponding 
vapor pressure pD and vapor density pu are 
uniquely determined from the saturation-state 
relationship (e.g. from the Steam Tables). 
Furthermore, if the total pressure p is specified, 
then the partial pressure pB of the non-condens- 
able gas follows from the Gibbs-Dalton Law 
as ps = p - pv Thus, from a knowledge of pg 
and G, the density pe is calculable (e.g. from 
I he perfect gas law). Finally, the u’ correspond- 
ing to the given Ts follows as W = p,J(pe -I- p,). 

In the bulk of the vapor-gas mixture (i.e. 
y -+ CC), it is required that u -+ 0, T + T, and 
W 3 Wm, or alternatively 

F’ = 0, w = w,, O=l (35) 

asH-+ co. 
Upon reconsideration of the governing 

equations, the boundary conditions, and the 
nature of the property variations, the following 
independent parameters emerge : T,, T,, p, and 
Wm. It was found more convenient to work with 
a somewhat different set of parameters. Let 

T sat, m denote the saturatien temperature of the 
vapor in the bulk.? With this, the working 
parameters were selected as follows: T,, 
T s8L, m (T, - T,, ,), Wm. It may be verified that 
the total pressure p is readily derivable from 
these. The quantity (T, - T,,,, ,) is a direct 
measure of the degree of superheating. 

They~dy~a~ic and transport properties 
A knowledge of the fluid properties is an 

essential prerequisite for the solution of the 
governing equations. Detailed information 
about the properties is available in Appendix 
A of the thesis [13] from which this paper is 
drawn. Only a brief outline is presented here. 

The properties p, A k, and cP of liquid water 
were taken from tabulations by Eckert and 
Drake [14] to which were fitted high-accuracy 
algebraic expressions. For the steam-air mix- 
ture, rules derived by Mason and Monehick 
[15-J from the kinetic theory of transport 
properties were employed in the computation 
of p, k, D, and a. Values of p and cp were calcu- 
lated by standard additive procedures. 

The properties p, k, and c,, of pure air and 
pure steam were taken from tile NBS tables 
[16], except for cP of steam, which is avail- 
able in algebraic form in the Steam Tables 
[17]. Air was treated as a perfect gas, 
while equation (13) of [17] served as the equa- 
tion of state for steam. The latent heat of 
condensation h, and the vapor pressure-- 
temperature relationship at saturation were 
algebraically fitted according to values in the 
Steam Tables. 

Generally speaking, the property calculations 
for the mixture were quite lengthy and complex, 
especially those for the transport properties. 
It is believed that the property values used in 
the analysis are the best presently available. 

Solutions 
Upon reviewing the governing equations, 

boundary conditions, continuity conditions, 

t That is, corresponding to pr in the bulk. 
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and constraints, it is evident that the task of 
obtaining solutions is particularly formidable. 
The fact that there are two co-existing variable- 
property boundary layers which are coupled 
by six conditions of continuity and constraint 
makes for difficulties well beyond those en- 
counted in the typical boundary-layer problem. 
Naturally, it was necessary to employ numerical 
means to achieve solutions ; but even with a 
computer such as the CDC 1604, the time 
requirement was measurable in tens of hours. 

In carrying out the solutions, it was found 
convenient to work with integral equations 
rather than with differential equations, the 
former permitting the direct incorporation of 
some of the boundary and continuity conditions. 
The integral equations were solved by a special 
iterative process which is described in detail in 
[13], Chapter 3. 

Heat tmnsfer parameters ; Nusselt-model refer- 
ence t~~er~ure 
The result of major interest is the heat 

transfer to the plate surface (y = 0). Upon 
applying Fourier’s Law 4 = (k XI’/~y),+, in 
conjunction with the variables defined in equa- 
tions (2), there follows 

4 = k,(g/4xv;)+ T, 19’(o). (36) 

The quantity 0’(O) is given by the numerical 
solution of the governing equations. 

It was decided that a m~nin~ul presentation 
of results would be achieved by comparing the 
heat transfer in the presence of noncondensables, 
superheating, interfacial resistance, etc., with 
that of the standard Nusselt model. In applying 
the Nusselt expression, it is necessary to specify 
the thermal driving force and the reference 
temperature for evaluating the thermodynamic 
and transport properties. For the former, it is 
reasonable to employ (T=*, m - T,). A proper 
reference temperature was derived as part of 
this investigation. 

To determine the reference tem~rature, 
numerical solutions of the governing equations 
(3) for the liquid layer were carried out for 
prescribed values of & SE T,,,, m ranging from 
671.7”R (212°F) to 539*7”R (80”F), that is, 
pressure levels ranging from approximately 
one atmosphere to @5 psi. For these runs, the 
temperature difference (T, - T,) was varied 
from 2 degF to 45 degF, The variable-property 
heat-transfer results thus obtained were com- 
pared with those of the Nusselt constant- 
property analysis. It was found that virtual 
coincidence between the two sets of results 
could be achieved by evaluating all the proper- 
ties? appearing in the Nusselt expression at the 
reference temperature T* defined by 

T* = T, -i- 0+31(& - T,). (37) 

With the specifications of the preceding 
paragraphs, the wall heat flux from the Nusselt 
model becomes 

qN& - c;(T,,, m - T,) * gx3 * 

hf&* wr* I( > 4v*z’ (38) 

All of the heat transfer results presented in 
this paper are in the form of q/qwu. Inasmuch as 
both q and qN# are proportional to x-*, this 
quantity cancels out of the ratio. In evaluating 
the reference temperature, T, is taken as T,,, m. 

ANALYSIS OF CONDENSATION WITH 
INTERFACIAL RESISTANCE 

A widely-accepts model of the conden~tion 
process [2,5-7,18-211 states that the saturation 
temperature of the vapor adjacent to the surface 
of the condensate is different from the tempera- 
ture of the liquid at that surface. This tempera- 
ture jump is attributed to the simultaneous 
process of evaporation and condensation that 
take place at the surface. An expression charac- 
terizing the temperature jump was derived by 
Schrage [18] on the basis of simple kinetic 

t Except h,$ which is evaiuated at G. 



1134 W. .I. MINKOWYCZ and E. M. SPARROW 

theory.? Schrage’s expression has been reworked 
by Balekjian and Katz [ 193 into a more tractable, 
but somewhat approximate form as follows 
(see also [7]) 

fi = (&)(&>i[+%‘% - T&j. 
(39) 

In this equation, (r is the condensation coefficient 
characterizing the fraction of the vapor mole- 
cules striking the liquid surface which actually 
condense; evidently, 0 < (T < 1. T,., is the 
saturation temperature of the vapor adjacent 
to the liquid surface fp,, is the corresponding 
saturation pressure of the vapor) and T6,L is 
the temperature of the liquid surface. 

For the special case in which Td,” - T,,,, m 
(pure, saturated vapor), it is possible to take 
account of the inter-facial resistance and still 
obtain an exact solution of the condensation 
problem. For purposes of comparison, a solu- 
tion based on the local-similarity concept will 
also be derived for this case. When a non- 
condensable gas and/or superheating are in- 
volved, then the presence of the interfacial 
resistance precludes an exact solution and local 
similarity must be employed. 

Pure saturated vapor 
For this situation, it is only necessary to deal 

with the governing equations for the condensate 
layer. Inasmuch as a reference temperature rule, 
equation (37), has been established, property 
variations may be set aside and equations (1) 
may be written as 

“r During the review process, an alternative model of the 
interfacial phenomena was brought to the attention of the 
authors. The alternative approach, which employs Grad’s 
13-moment molecular velocity distribution, is described in 
[22]. At this time, there is no clear-cut manner of assessing 
which of the models leads to heat transfer results that are 
closer to reality. 

These are to be solved subject to the following 
boundary conditions, respectively at y = 0 and 
y=6 

where 

(41 b) 

Q = (&)($)“(+). (42) 

Owing to the fact that T,,,, is a prescribed 
constant, the quantity C2 is also a constant. 
The condensate temperature L$, at y = 6 is an 
unknown function of x. 

The foregoing set of equations can be solved 
without approximation. The details will be 
omitted here, and only the essential results are 
outlined. The condensate layer thickness 6 is 
given by the following quartic algebraic equation 

where the second term on the left stems from 
the presence of the interfacial resistance, Once 
6(x) has been determined from the foregoing, 
then the interfacial temperatures jump and the 
wall heat flux can be evaluated from 

Td,li - Ts,L = KS,,, - T,)/ [I +(~~)~I (44) 

q = k(&,L - KM. (45) 

All of the liquid properties appearing in the 
foregoing equations are to be evaluated at the 
reference temperature T* given by equation 
(37), wherein & corresponds to &, L. 

An alternate, but approximate, formulation 
may be made by assuming that the expressions 
stemming from the Nusselt model can be 
applied locally. In essence, this ignores the 
history of the flow upstream of the point of 
interest. In other words, the similarity solution 
is assumed to apply locally. By taking the 
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Nusselt expression for sfx) and introducing the 
local thermal driving force (q,L - T,) there 
follows 

Equations (44) and (45) remain as before, and 
the properties are to be evaluated at the reference 
temperature. Simultaneous solution ofequations 
(46) and (44) yield 6 and ‘&, and with these, 
the heat ff ux is evaluated from equation (45). 

As will be demonstrated in a later graphical 
presentation, the wall heat flux results calculated 
from the exact solution and from the approxi- 
mate local-similarity solution are in very good 
agreement. This lends support to the applica- 
tion of the local-similarity concept to problems 
involving noncondensable gas and/or super- 
heated vapor, in which cases similarity solutions 
are not possible in the presence of interfacial 
resistance. 

When applied to the general case involving 
noncondensables and/or superheating, the local- 
similarity concept leads to the following mathe- 
matical description of the problem: The 
similarity differential equations (3) and (18-20) 
continue to apply, but at a specific x location. 
All the boundary, continuity, and constraint 
conditions also continue to apply on the same 
basis, except for interfacial temperature con- 
tinuity, equation (31), which is deleted. In its 
stead, one employs the temperature jump 
condition, equation (39). When the latter is 
rephrased in terms of the variables of the 
analysis, there is obtained 

fha) = vx~“/3wvlCw?d) - WY (47) 

in which R is given by equation (42). Inasmuch 
as T,,,, i.e. O(O), is unknown a priori, so also is 0. 

The explicit appearance of x 2 in equation (47) 
is a direct indicator of the non-similar nature 
of the problem. In order to proceed with the 
local-similarity solution, it is necessary to 

specify the x-location of interest. Once this 
has been done, the details of the numerical 
solution method are only slightly different from 
those for the similarity case. After solutions 
have been found, the local wall heat flux q is 
evaluated as before from equation (36) and then 
compared with qNU as given by equation (38). 
The reference temperature for the latter is 
specified by equation (37), with T6 taken as 
T cast, CR’ 

HEAT TRANSFER RESULTS 

The effect of the presence of a noncondensable 
gas on the local wall heat flux is displayed in 
Figs. l-5. The first two figures pertain to the 
case where the bulk is saturated, that is T, = 
T sat, m* The last three of these figures are for 
the situation in which the bulk is superheated. 
All the results to be discussed in this section 
correspond to the condition where interfacial 
resistance and thermal diffusion~diffusion 
therm0 have been suppressed. These effects 
will be discussed later. 

Attention is first directed to the results for 
the saturated mixture, Figs. 1 and 2. Each one 
of these figures is, in turn, subdivided into 
separate graphs, and each graph pertains to a 
specific value of T,,, m in the range from 671.7”R 
(212°F) to 539.7”R (80°F). The corresponding 
range of the total pressure p is from approxi- 
mately one atmosphere to 0.5 psi. In each graph, 
there are plotted results corresponding to bulk 
concentrations W, of the nonGondensable gas 
ranging from OX@1 to 0.1. The abscissa is the 
temperature difference between the saturated 
bulk and the wall. 

Inspection of the figures reveals that the 
presence of a noncondensable gas has a decisive 
effect in reducing the condensation heat transfer. 
It is especially interesting to observe that 
reductions of more than 50 per cent are sustained 
for bulk mass fractions W, as small as 0.5 per 
cent. With increasing values of W,, the heat 
flux decreases monotonically. At a fixed value 
of Wa, the reduction in heat transfer (relative 
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T sw.m - 5 ‘- F’ 
FIG. 1. Condensation heat transfer in the presence of a noncondensable gas, saturated 

bulk T,,,, Lo = 671.7”R and 639.7”R. 
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FIG. 2. Condensation heat transfer in the presence of a noncondensable gas, saturated bulk, 
T SBL, m = 609,7”R, 574.7”R, and 539.7”R. 
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to qNu) is larger as the bulk-to-wall temperature 
difference increases, except at small temperature 
differences and larger Wm. Furthermore, by 
making comparisons from graph-to-graph, it 
is seen that the effect of the noncondensable 
gas is strongly accentuated as the bulk saturation 
temperature (i.e. system pressure level) decreases. 

The fact that such large reductions in heat 
transfer are brought about by such small bulk 
concentrations of noncondensable gas can be 
made plausible on the following physical 
grounds: The vapor that is to be condensed is 
carried from the bulk to the interface by con- 
vective flow, which also carries with it the 
noncondensable gas. However, since the inter- 
face is impermeable to the noncondensable 
gas, it must be removed from the interface at 
the same rate at which it arrives. This removal 
is accomplished by a diffusive flow back into 
the bulk. Inasmuch as the magnitude of the 
diffusive flow depends on the magnitude of 
the concentration gradient, it is evident that 
the interfacial concentration of the noncondens- 
able gas must build up to a level sufficient for 
the balance between the convective inflow and 
diffusive backflow. 

The buildup of the noncondensable gas at 
the interface causes a corresponding reduction 
in the partial pressure of the vapor at the 
interface. In turn, this reduces the saturation 
temperature at which the condensation takes 
place. The net effect is to lower the effective 
thermal driving force (T, - T,) thereby reduc- 
ing the heat transfer. 

All of the trends that were enumerated in 
connection with Figs. 1 and 2 can be explained 
in light of the foregoing arguments, except for 
the droping off of the curves at small (T,,, o. - 
T,) and larger Wm. This latter behavior occurs 
because T, approaches closely to T, for small, 
non-zero values of (T,,,, a, - T,). 

Consideration will now be given to the effect 
of noncondensable gases for the case of super- 
heated vapor, Figs. 3-5. Each one of these 
figures pertains to a specific value of W,, 
respectively 0905, 002, and 0.1. Furthermore, 
4D 

0.8 \” - -,--’ 
._ - .._.. - .--._ .__ 

I I I 0.8 

0.5 

0.6 
q 

Go.5 

t 

0.4r 

FIG. 3. Condensation heat transfer in the presence of a non- 
condensable gas, superheated bulk, IV,, = 0005. 

each figure is subdivided into 3 grids. Each grid 
corresponds to a given value of T,, m. The 
various curves that are plotted within each 
grid are parameterized by the degree of super- 
heating, (T, - T,,, ,). The ordinate is the ratio 
of the heat flux 4 to the Nusselt value qNu the 
latter corresponding to (T,, oD - T,) as thermal 
driving force. The abscissa remains as before. 

Careful inspection of these figures reveals 
that all of the qualitative effects stemming from 
the presence of the noncondensable gas are 
identical to those already enumerated for the 
case of saturated mixtures. The plausibility 
arguments previously advanced continue to 
apply. The reduction in heat transfer due to the 
noncondensable gas is somewhat lessened owing 
to the opposite effect of superheating. This 
aspect will be brought out more strongly in the 
next section. 

As a final note, it is well to reiterate that the 
large reductions in heat transfer that have 
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FIG. 
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4. Condensation heat transfer in the presence of a non- 

condensable gas, superheated bulk, W, = 092. 
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5. Condensation heat transfer in the presence ui a non. 
condensable gas, superheated bulk, W, = 0.1. 

thus far been discussed in connection with 
Figs. l-5 are due entirely to the diffusional 
resistance of the mixture. 

Superheating 
Consideration is first given to the effect of 

superheating a pure vapor. To this end, Fig. 6 

&,,- r, (‘JW) 

FIG. 6. Condensation heat transfer for pure superheated 
vapor. 

has been prepared_ The figure contains five 
grids, each for a different value of T,,,. in 
each grid, results are shown for superheats of 
100 degF, 200 degF, and 400 degF. On the 
ordinate, q is normalized by qNy, the latter 
corresponding to zero superheat. Thus, the 
deviation of the curves from unity is a direct 
measure of the increase in the wall heat transfer 
due to superheating. 

The figure shows that superheating brings 
about only a slight increase in the heat transfer 
during the ~ond~sation of a pure vapor. 
Furthermore, for a given degree of superheating, 
q/qNu is almost independent of T,,,, and of 

CL,, oD - T,). However, when the latter takes 
on very small values, it is expected that q/q*” 
will become large, owing to the diminution of 
the ~onden~tion rate (i.e. qNu -+ 0). Such a 
trend is suggested by the uppermost curves in 
the top two grids of the figure. 



It is interesting to compare the present results 
with those of Sparrow and Eckert [4-J, who 
negfected both free convection and variable 
properties in the sq_mhea%zd vapm For 
example, for the case of 400 degF superheating 
and L, oo = 671*7”F, the latter investigators 
predict q/qN,, = lG45, which compares favor- 
ably with the present value of lG47. This 
suggests that, at least for the case of a pure 
vapor, the role of free convection is i~si~~~t. 

Attention may next be directed to the effect 
of superheating in the case when a noncondensw 
able gas is present, and for this, one returns to 
Figs. 3-5. The structure of these figures has 
already been expIained. Study of the figures 
indicates that for given values T&do, fT,+, - 
T,), and W,, the percentage increase in heat 
transfer due to superheating (i.e. relative to 
zero superheating) is substantially larger than 
in the case of a pure vapor (Fig. 6Z. T&s is 
especially true for high T,,_,, small (T,,, b. - 

T,), and low Wm. Indeed, for these conditions, 
the absolute increase in q due to superheating 
far exceeds that for the pure vapor. 

Thug the present results show that while 
superheating is very nearly a negligible effect 
in the case of pure vapors, it may be an important 
factor during the condensation of vapors that 
contain a noncondensable gas. 

It is revealing to consider first the effects of 
interfacial resistance on the condensation heat 
transfer of a pure saturated vapor. This informa- 
tion is shown in Fig. 7. Owing to the fact that 
the presence of i~te~a~al resistance precludes 
similar solutions, it is necessary to specify the 
x-location for which results are desired. The 
left-hand portion of Fig. 7 corresponds to 
x = 0.5 ft, while the right-hand portion cor- 
responds to x = 3 ft. 

The figure is su~i~d~ into severaI grids* 

Fk?. 7. Effect of interfacial resistance on the condensation heat transfer 01 pure 
saturated vapor. 
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each of which contains curves for a specific 
value of T,, oo. The solid lines represent the 
exact solution, while the dashed lines are for 
the local-similarity solution. When the two 
solutions are essentially coincident, then a 
dot-dashed line is used. The curve parameter IY 
is the condensation coefficient. Inasmuch as 
qNu is based on (T,,,, o. - 7J as thermal driving 
force, the deviation of the curves from unity 
is a direct measure of the role of interfacial 
resistance. 

From an inspection of the figure, it is seen 
that the effect of the interfacial resistance is 
most in evidence at very small values of 0 and 
at tow T,,,, m and (T,,+ - T,). On the other 
hand, the interfacial resrstance is fully negligible 
at the higher T,,,, m (higher pressures), no matter 
what the value of CJ. Furthermore, if u is 0.35 
or greater, then the interfacial resistance plays 
no role, regardless of the values of T,,,. 3c or 

US,,. a, - T,). All of the aforementioned trends 
can also be deduced by physical reasoning with 
the aid of equation (39). 

It is appropriate, at this point, to consider the 
available information for CJ. Values for c of 
approximately 0.04 have been given by several 
investigators [20,21]. However, the very recent 
results of Nabavian [21] suggest that a more 
probable range for (T is 0.3.51.0. Even more 
recently, Mills [22] performed a condensation 
experiment with pure saturated steam and 
showed that cr is essentially unity. In addition, 
it is demonstrated in [22] that the experiments 
of Hickman are consistent with a G of unity. 
If one adopts the cr values from these most 
recent studies, then it would appear that the 
effect of interfacial resistance can be neglected. 

A comparison of the solid and the dashed 
curves appearing in Fig. 7 shows that the 
differences between the exact solution and the 
local-similarity solution are, for all practical 
purposes, negligible. This finding lends support 
for the use of the latter model for the case 
wherein noncondensables andjor superheating 
are present. 

As a final comment in connection with Fig. 7, 

it may be observed that the effect of the inter- 
facial resistance decreases with increasing dis- 
tance from the leading edge. This is readily 
explained by noting that the condensation 
rate ti decreases with increasing X, and in 
accordance with equation (39), the temperature 
jump decreases correspondingly. 

A presentation similar in form to Fig. 7, but 
for the case of a pure vapor with 400 degF 
superheat, is presented in Fig. 8. The results 
displayed in the figure are based on the focal- 
similarity concept, inasmuch as an exact solution 
cannot be attained. The trends that are in 
evidence in this figure are identical to those 
discussed in connection with Fig. 7 and need 
not be repeated. 

For cases in which there is a noncondensable 
gas and/or superheating, the effect of the 
interfacial resistance is displayed in Figs. 1, 2, 
and 4. Inasmuch as the q/qNu values correspond- 
ing to the presence of interfacial resistance were 
found to fall very close to those without this 
effect, the former are plotted as discrete points 
so as to maintain their separate identity. In 
order to exaggerate the role of interfacial resis- 
tance, points corresponding to CT = 0.04 are 
shown. If results for g = 1-O had been plotted, 
then the points would have fallen squarely on 
the solid curves. It is evident from an inspection 
of these figures that the interfacial resistance 
plays a negligible role in the condensation of 
steam when air is present as a noncondensable 
gas. 

Solutions including thermal diffusion and 
diffusion therm0 were carried out for cases 
corresponding to the extreme values of the 
independent parameters ; interfacial resistance 
was suppressed. The heat transfer results stem- 
ming from these solutions are plotted as discrete 
points in Fig. 9 in order to preserve their 
identity. The solid curves represent results 
wherein thermal diffusion and diffusion therm0 
are absent. It is seen from the figure that the 
points are essentially coincident with the curves, 
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FIG. 

~SAl,co - 5 t deg F 1 

8. Effect of interfacial resistance on the condensation heat transfer of pure 
superheated vapor. 

thereby indicating that the thermal diffusional 
phenomena are of no significance in this 
situation. 

Comparisons with others 
Within the knowledge of the authors, the 

only systematic experiments on the condensa- 
tion of steam with air as a noncondensable 
were performed by Othmer [23]. The experi- 
mental apparatus consisted of a cooled horizon- 
tal cylinder situated in an enclosure containing 
a saturated mixture of steam and air at essentially 
one atmosphere. Measurements were made of 
the overall rate of heat transfer Q for a range of 
surface temperatures T,. 

Inasmuch as the physical system of the 
experiment differs from that investigated here, 
the only reasonable comparison is of Q/Q0 
values, where Q. is the overall condensation 

rate in the absence of noncondensables.? Un- 
fortunately, the experimental determinations 
of Q and Q. were, in general, not performed at 
the same value of (T,,, m - T,), and after 
appraisal of the data, it was decided that 
interpolation would not lead to reliable re- 
sults. Only at a temperature difference of 
10 degF were the Q and Q. both available. The 
corresponding experimental points are shown 
in Fig. 10. Also shown as solid lines are the 
Q/QN. predictions of the present analysis. 
The level of agreement is about as good as can 
be hoped for in view of the difficulty encountered 
in performing such experiments and of the 
differences in the physical system investigated. 

There are also shown in the figure dashed 
lines that represent the predictions of the 

t For the analytical results, Q. = QNU 
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FSG. 9, Efieci of thermal diffusion and difktsion therma on 

condensation heat transfer. 
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FIG. tCk Comparison of analytical and experimentat heat- 
transfer results. 

constant-pro~rty analysis of Sparrow and 
tin [lo]. At first glance, it appears thut the 
constant=pro~rty results are in better agreement 
with the data than are the present results. 
However, this is illusory, since the property 
values used in parameterizing the constant- 
property analysis are somewhat different from 
those appropriate to the specific situation under 
consideration, especially in the case T&. 1? = 
671*7”R. This difficulty arises because the 
constant-property analysis cannot be readily 
tailored to tit any arbitrary case of interest. 
However, it can be reasoned that if the appro- 
priate property values are employed, the predic- 
tions of the constant-~ro~rty analysis are 
shifted downward toward those of the analysis. 

REPRESENTATIVE TEMPERATURE PROFILES 

Some insight into the role of the various 
transport processes can be obtained by inspec- 
tion of the boundary layer temperature profile. 
To this end, two representative temperature 
proliles are displayed in Fig. 1 I. Both profiles 
correspond to saturated vapor at T%, m = 
539.7”R and W, = OG2. The temperature dif- 
ference between the fluid bulk and the wall is 
10 degF. The uppermost temperature profile is 
for the case cr = O-04, while the lower profile 
is for d = 1.0. 

In preparing the figure, it was decided that a 
better physical feel would be obtained if dimen- 
sional quantities, rather than dimensionless 
quantities, were employed as ordinate and 
abscissa variables, Inasmuch as the thickness 
of the condensate layer (~0401 in.) is three 
orders of magnitude less than the thickness of 
the vapor-gas boundary layer, a broken abscissa 
scale had to be employed. 

Upon considering the figure, it is seen that 
the largest part of the overall temperature drop 
between the bulk and the wall occurs within the 
vapor-gas boundary layer. This underscores 
the decisive role of the diffusional resistance 
in the vapor-gas boundary layer. The interfacial 
resistance, although exaggerated by a small 
value of Q f ==O@#) and a low value of T,,. 4), 
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FIG. 11. Representative temperature profiles. 
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=smumlf WE&e eingehende ana~yt~sc~ Untersu~h~n~ der laminaren F~~mkonde~~tjon wird 
vorgefegt. Untersucht wird eine isotherme senkrechte Platte mit Wasserdampf afs k~ndens~erendes 
Medium und Luft als Inextgas Neben dem inertgas schliesst das analytische Mode11 den Ubergangswider- 
stand, die Uberhitzung, die freie Konvektion und die Diffusion info&e von Temperatur- und Konzentra- 
tionsgradienten und die veriinderlichen Eigenschaften sowohl im Fldssigkeits- als such im Gas-Dampf- 
Bereich mit ein. Ergebnisse ftir den WBrmeiibergang werden fti einen weiten Umfang von Parametern 
erhalten, namlich die Massenkonzentration des Inertgases, die HBhe des Systemdruckes, die Temperatur- 
difierenz zwischen Kiihl%iche une Dampfraum und den Grad der uberhitzung. Es wird gezeigt. dass 
eine geringe Massenkonzentration an Inertgas eine entsheidende Wirkung auf den ~rme~bergang 
haben kann. Zum Beispiel wird fiir einen Massenanteil von 0,5 Prozent an Luft der W~rne~bergan~ 
urn M Prozent oder mehr vermindert. Der EinNuss des Inertgases tritt bei niedrigen Drucken noch stsrker 
hervor. Es zeigt sich, dass die zuvor erw%hnte Herabsetzung des ~rrne~berg~~ vollkommen vom 
Djffus~onswiderstand der Gas-Dampf-Grenzs~hicht verursacht wird. Der ~~rgangswiderstand ist. 
wie gezeigt wird, ein Efiekt 2. Ordnung. ~hnliche Ergebnisse riihren vom Therm~iffusions- und vom 
Diffus~onsthe~o~ekt her. Der Eintluss der ~~rhit~~, der sehr gering fi& einen reinen Dampf ist. 
wird bei Yorhandense in eines n~chtkondensjer~~ Gases sehr vie1 bedeutsamer. Eine Regel fir die 
~~u~tern~ratur wird abgeleitet, um das Nu~elt-Mode~l auf B~i~gungen mit ver~nderl~~h~ Eigen- 

schaften zu erweitern. 

AHHorawn-Aaercfl OdUIMpHOe aHanHTnYeCKOe uccnenoBaH*.e JIaMrtHapHOti IIJI~HKK, 06pa- 

3ytOWeh!R npH KOHHeHCW.Wi, PaCCM3TpMEEteTCFI CJIyWlt WiOTepMWieCKO# BepTHKaJIbHOfi 

IlJlaCTYIHbK, 06TeKaeMOi ItOH~eHCKpyIOll&HMCfl napOM lIpI HaJlH'lMII BO3nyXa'B KaYeCTBC! 

tfeKoH~ewcnpyro~er0 raaa. HpoMe Ke~oajzceficnpywu~ero ra3a aKanHTuYecKaR Mofienb 

BKawIaeT TaK*e c~npoT~~~~@K~e tIa rpawMqe pasaejra i@3, rreperpee a C~o6o~~y~ KoKz3eK- 

LWIO, 06yC~OB~eHn~~ rp3~~~eHTaM~ Te~~e~aTyp~ M ~O~~qe~~T~a~~ji, MaCCOByiO li TepMM- 

seetryx, ~M~~y3~~, a Tawwe nepeaeKHbie cflo&rsa KaK B ~~~Koc~~~ TaK LIB raaonaposot 

CMecA. AaHHbIe no T~n~oo6~e~y no~yqe~~ $&jr~t u&ilpo~oro ~nan3aoKa nap3MeTpoB, BKJUO- 

raromx lrraccoaylo ~0K~eKTpa~~~ KeKoK~eHcmpoBaH~oro ra38, ~a3~eHne B cnCTeMe, 

pa3eocTb Te~ne~aTyp mewRy cpegoft ii cTeHK0~ H cTerieKb neperpesa. ~oKa~~BaeTc~, YTo 

~e6o~bi~~e MaCCoBHe KoKt~eKTpa~~u HeKo~~~eHeu~y~~erocfl ra38 ~ory~ 3Ha~nTe~b~o 

BJIIIfiTb Ha CWOpOCTb TeR~OO6Me~a. Hanpn.wep, mm MaccoBoti K~~~e~pa~~~ Boanyxa 

~~,~~~~ Ha6~~~aeTC~ ~~e~b~eK~e Te~~oo6Me~a go 50 y& M Gojree. BjIgffHkIe ~eKo~~~nc~- 
pymmero raaa npORBJiReTCR npa H143K~x RaenetrffRx. RoKasaso, vro yKaaarfKoe BfiILue 

yMeHbfUeHHe Tet'tJlOO6MWa fipOHCXO@fT nOJIWOCTb!O 33 C'Zi+T J&M##Iy3AOHH5rO COIIpOTUBJleH%iR 

CJIOFI Ha rpaKHqe raa-nap. ConpoTaBneHne Ha rpaal?iqe pan]rrena 4a3 KMeeTBTopocTeneHHoe 

3Ha'leHlle. Awanorsuwbtfi l'IO/JXOA IIpKMeHfleTCFl K TepMWIeCKOfi A@@ySWl4 El TepMOA@- 

f$yarno1~ony conpoTunne8iuw. Ihvnfue neperpesa, ~0~0p0e 0qeKb Mano B cnysae qwzTor0 

napa, CTaHoeMTcfl 3IiavivfeabKbIM npw KanHqPx HeHoHnenctrpyroqerocR ra3a. ,IJnfl npn- 

MeKeHkffi 'fKcna HyccenbTa K ~CJIOBHRM nepenzeKKbxx CBOtirCTB, BbzeeAeKo npaerno HaXOW 


